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Abstract

The term "Gyrotactic" represents the swimming behaviour of certain types of microorganisms
in suspension subjected to gravity and shear torque. The interesting collective behaviour is shown
in the vertical pipe flow, that is, the cells swim toward the centre and the wall in the downward
flow and the upward flow, respectively. Instabilities arise from this effect and lead to bifurcations.

In this project, based on the unsteady solver, the bifurcation was studied under two conditions
of fixed flow and prescribed pressure gradient. In fixing the flow rate, bifurcations are found
matched the previous results made by [Kes86b] and [FBH20]. Regarding the pressure gradient,
one bifurcation related to the initial flow conditions is found. And the explanation is given from the
perspective of combined influence on the velocity profile of cell distribution and pressure gradient.

The unsteady solver is also utilised to investigate the flow with the time-period pressure gra-
dient. starting from a derived linearized state-space system, the effects of different parameters on
the system are studied. And found "diverge gap" in certain Reynolds numbers, and proposed an
explanation.
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Chapter 1

Introduction

1.1 Motivation

In order to resolve the contradiction between increasing energy demand and environmental degrada-
tion, sustainable (clean) energy is increasingly attractive. Among them, bioenergy, especially algae
fuel, has broad prospects due to its wide availability, carbon neutrality and high yield. Using or-
ganic materials such as garbage and manure wastewater, microorganisms (such as Chlamydomonas)
can transfer solar energy as a natural part of photosynthesis to biomass oil, with a harvest cycle
of 1-10 days. In addition, the U.S. Department of Energy estimates that if the technical difficul-
ties are solved, the production of microalgae biomass oil can replace all petroleum fuel needs of
America, with a requirement of 15,000 square miles, only 0.42% of the US land area[GLS+10]

Today, algae cultivation facilities are mainly photobioreactors and open ponds. Although the
capital and operating costs are relatively higher, the former method is easier to control and less
susceptible to contamination, so it is more suitable for research. Figure1.1a shows a typical out-
door vertical photobioreactor built by researchers[HWZ+18] and Figure1.1b shows the structure
of the system [MTB+09]. They are composed of transparent tubes made of glass or plastic, with
rigid supports, and equipped with external circulation and thermoregulation devices, and the pH
value of the environment is adjusted by CO2 dosage. In each tube, a vast number of swimming
microorganisms interact with each other and the aqueous environment. A better understanding of
this reciprocal influence has an attractive potential in industry, the energy input of a bioreactor
can therefore be considerably minimised[Bee20].

(a) Vertical algae bioreactor system[HWZ+18] (b) Photobioreactor diagram [MTB+09]

Figure 1.1: Photobioreactor system

The hydrodynamics involved in this interaction are highly related to the orientation mechan-
ics of the microorganisms in suspension. Each type of microorganisms has a specified directed
locomotion in respond to external stimuli, known as "taxis". For example, geotaxis refers to the
response to gravity; phototaxis, an orientation to light; rheotaxis, to viscous torques, chemotaxis
and magnetotaxis to chemical concentration gradients and magnetic field, respectively.
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Figure 1.2: Individual behavior due to gyrotaxis effect, Tµ refers to viscous torque and Tg refers to the gravitational
torque due to the offset of mass centre that the microorganism experienced. The microorganism is assumed to be
a sphere with 2 flagella

Among them, gyrotaxis [Kes84][Kes85a][Kes85b][Kes86a] describes the directional response to
both gravity and vortical flow ( i.e. the combined motile of geotaxis and rheotaxis). It can be seen in
several types of microalgae, such as Chlamydomonas, Dunaliella and Heterosigma, whose centroids
deviate from their geometric centres due to their physiological structure. In vertical pipe flow, the
resultant gravitational torque is balanced with the horizontal viscous torque it bears. As shown
in Figure1.2, this joint effect produces a tilted swimming direction to the vertical. As a result,
collective horizontal locomotion manifests itself under specific flow conditions, moving away from
upflowing and toward downflowing areas of the fluid. For example, as shown in Figure1.3, a beam
of cells called plume is generated in the downflow pipe. On the contrary, the upflow fluid guides
the cells to form a ring of high cell concentration near the wall. Furthermore, the non-uniformity of
the horizontal concentration caused by the collective motion will cause the inhomogeneous density
distribution of the suspension, which will affect the flow velocity distribution.

(a) upflow (b) downflow

Figure 1.3: Schematic diagram of collective buoyant convection of gyrotaxis micro-algae in upward and downward
poiseuille flow

1.2 Literature Review and Objective

The collective locomotion of gyrotaxis suspension in upward flow is first documented by Childress,
Lavandowsky & Spiegel [CLS75]. And Kessler documented the downflow circumstance experi-
mentally in [Kes85a]&[Kes86b]. In Kessler’s articles, he also developed a set of 1D steady-state
equations to describe the system. He first described the swimming capability of the microorgan-
isms by a diffusion term and derived an equation for cell concentration[Kes85a]. And then defined
a buoyant constant to describe the cell/fluid coupling intensity and inserted the buoyancy term to
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the original steady Naiver-Stokes equation. Then combine the two equations to modelling these
collective phenomena [Kes86b]. He also deduced a closed-form theoretical solution for vertical
pressure gradient pz = 0. Further steady numerical modelling methods are taken in the basis of
it, such as the Fokker-Plank Equation provided by Pedley and Kessler[PK90], which estimates
the swimming orientation p.d.f.(probability density function) of microorganisms and Generalised
Taylor Dispersion (GTD) theory [HB02] & [MF03], which estimate the collective orientation from
the p.d.f. of a single tracer.

As for the instability and bifurcation of the gyrostatic plume emerging in a downward pipe
flow. Kessler found that under specific circumstances, the resultant focused beam is prone to
instability in a form of regular-spaced high cell concentration regions, referred to blips [Kes85b] &
[Kes86b]. In the basis of this, recently, utilising the Fokker-Plank Equation, Hwang and Pedley
found a similar blip-like instability in vertical downflow channel flow[HP14]. And Fung, Bearon,
and Hwang [FBH20] study the same topic using Fokker-Plank Equation, GTD model and linearised
model. By seeking the steady solutions under different Richardson number and basic flow rate,
they found different saddle-node bifurcations at low and high flow rates. In their study, the value
of central velocity and cell concentration is documented in line charts with Richardson number
as the horizontal axis. In high flow rates, a saddle-node bifurcation point is found at Ri = 59.86
for GTD model and 57.68 for the linearised model. In low flow rates, a saddle-node bifurcation
emerges from Q = 0 state.

One of the objectives of this project is to follow Fung, Bearon, and Hwang’s bifurcation
study[FBH20]. First, develop an unsteady model based on Kessler’s 1986 version[Kes86b], find the
bifurcation under each fixed flow rate condition and compare the result with L.F.’s work[FBH20].
The second is to modify the model to fix the pressure gradient pz, to find the bifurcation un-
der each prescribed pz. Another goal is to use the unsteady solver to simulate the time-periodic
flow condition, to investigate the performance of the system under sinusoidal pressure gradient
oscillations.

1.3 Outline of the Thesis
In addition to the introduction and conclusion&evaluation of the first and last chapters, this
report is divided into three parts. In chapter 2, the modelling method, non-dimensionalisation
and numerical scheme are reported as methodology. Chapter 3 discusses the bifurcations when
specifying flow and pressure gradient separately. Chapter 4 describes and explains the diverge gap
found in pulsating flow.
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Chapter 2

Methodology

2.1 The Conservation Law of Cells

2.1.1 Cell Characteristics and Assumptions

In this article, as shown in Figure1.2, we assume that microorganisms are spherical with two sets
of flagella on both sides of the axis and have the same radius of a∗. And their centroids have a
uniform rearward offset L∗ relative to each geometric centre. They swim at an average velocity of
V ∗c , along the direction of each cell axis, that is, on the same line as the geometrical and gravity
centres.

According to Kessler’s estimation[Kes86b], a∗ ≈ 5×10−4cm, L∗ ≈ 10−5cm, V ∗c ≈ 10−2cm s−1.
Besides,the density of the microalgaes ρ∗c is estimated 5% greater than the flow density ρ∗w.

2.1.2 Gyrotaxis Equations

The direction of a gyrotaxis cell is determined by the balance between the gravitational and shear
moments it subjected in a flow. Based on the spherical assumption, the balanced equation can be
described as:

T∗g + T∗µ = m∗gL∗ + 4πµa∗3 (∇×U∗a∗ − 2Ω∗) = 0, (2.1)

with T∗g and T∗µ as the gravitational and shear torques respectively, µ as viscosity coefficient,
U as flow velocity, Ω∗ as flow vorticity.

As a result, in a vertical flow of velocity of u∗. With the radial coordinate r∗, the radial velocity
of swimmers V∗cr can be described as:

V∗cr = β∗
du∗

dr∗
, (2.2)

where
β∗ = −4πµa∗3

m∗gL∗
(2.3)

The coefficient β∗ is introduced by Kessler [Kes86b] as a length scale modelling the gyrotactic
behaviour of swimmers.

The random swimming behaviour is summarised as diffusion coefficient D∗. The radial cell flux
J∗ is then described as:

J∗ = n∗V∗cr −D∗
∂n∗

∂r∗
, (2.4)

The balanced cell conservation equation is shown below, and there is a detailed derivation
process in Appendix A. n∗ represents the cell concentration.

∂n∗

∂t
+∇ · (n∗U∗) = 0 (2.5)

On the basis of the continuity equation of incompressible flow ∇ ·U∗ = 0, plus the flux term,
the cell conservation law can be described as:
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∂n∗

∂t
+ U∗∇ · n∗ = − 1

r∗
∂

∂r∗
[r∗ (J∗)] (2.6)

In a vertical flow, that is, U∗ = u∗(r), U∗∇ · n∗(r, t) term is eliminated, and replace J with
Equation2.4, the cell conservation equation is:

∂n∗

∂t
= − 1

r∗
∂

∂r∗

[
r∗
(
β∗n∗

du∗

dr∗
−D∗ ∂n∗

∂r∗

)]
(2.7)

In practice, a compensation term is plugged in to improve the cell number conservation against
the numerical cell number lost.

∂n∗

∂t
= − 1

r∗
∂

∂r∗

[
r∗
(
β∗n∗

du∗

dr∗
−D∗ ∂n∗

∂r∗

)]
+Kp(N

∗
0 −N∗)n∗ (2.8)

where the total number of cells is:

N∗ =

ˆ 1

0

n∗(r)rdr (2.9)

2.2 Momentum Equation with Buoyant Term
In a vertical pipe flow, the Naiver-Stokes equations can be simplified as below in a cylindrical
coordinate:

µ
∂u∗

∂t
= −p∗z + ρ∗wg + µ

[
1

r∗
∂

∂r∗

(
r∗
∂u∗

∂r∗

)]
(2.10)

The density of the suspension ρ∗ is:

ρ∗ = ρ∗cn
∗v∗ + ρ∗w(1− n∗v∗) = ∆ρ∗n∗v∗ + ρ∗w (2.11)

with v∗ as the volume of a single cell and the density difference ∆ρ∗ = ρ∗c − ρ∗w.
Replace ρ∗w in Eq.2.10 with Eq.2.11, the momentum equation is then become:

µ
∂u∗

∂t
= µ

[
1

r∗
∂

∂r∗

(
r∗
∂u∗

∂r∗

)]
− (p∗z − (ρ∗ −∆ρ∗n∗v∗)g) (2.12)

Define P ∗z = p∗z + ρ∗g, Eq.2.12 can be then written as:

∂u∗

∂t
=

1

r∗
∂

∂r∗

(
r∗
∂u∗

∂r∗

)
−
(
P ∗z
µ

+
∆ρ∗v∗g

µ
n∗
)

(2.13)

Kessler concludes the cell-concentration/fluid-velocity coupling coefficient as the buoyant con-
stant α∗ before n∗. With

α∗ = −∆ρ∗v∗g

µ
(2.14)

The momentum equation of vertical pipe flow in cylindrical coordinate is finally:

∂u∗

∂t
= −P

∗
z

µ
+ α∗n∗ +

1

r∗
∂

∂r∗

(
r∗
∂u∗

∂r∗

)
(2.15)

2.3 Mesh and Boundary Conditions
The mesh is set to be one dimensional, equal-spaced, from the center of the pipe to the pipe wall
covering half of the pipe. Symmetric boundary conditions are deployed at the centre. And for the
wall boundary conditions, an impenetrable boundary condition is deployed for flow velocity, and
the no-flux condition is set for that of cell concentration.

As a result, for cell concentration law,(
∂n∗

∂r∗

)
r∗=0

= 0, at centre (2.16)
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(J∗)r∗=R = −n∗β

(
−du

∗

dr∗

)
r∗=R

−D
(
∂n∗

∂r∗

)
r∗=R

= 0, at wall (2.17)

and for momentum equation: (
∂u∗

∂r∗

)
r∗=0

= 0, at centre (2.18)

(u∗)r∗=R = 0 , at wall (2.19)

2.4 Parameters and Non-dimensionalisation

Symbol Name Scale Dimensional Non-Dimensional
R Radius of the tube L R∗ = 1 cm R = R∗/R∗ 1
Vc Velocity of swimming cells L/t 10−2 cm/s V ∗c /V

∗
c 1

ρw Density of water m/L3 1 gm/cm3 ρ∗w/ρ
∗
w 1

n1 Average concentration N/L3 average cell concentration
cells/cm−3 n∗1/n

∗
1 1

Table 2.1: Characteristic parameters

Symbol Name Scale Dimensional Non-Dimensional
v Volume per cell L3 5× 10−10cm3 v∗

R∗3 5× 10−10

µ Dynamic viscosity m/Lt 10−2 gm/(cm s) µ∗

ρ∗R∗V ∗c
5× 10−10

β Gyrotactic Constant L CµVc

ρCgL
= 5× 10−2 cm β∗

R∗ 5× 10−2

α Negative Buoyancy L4/t2 ∆ρ
ρ vg = 2.5× 10−8 cm4/s2 α∗

R∗2V ∗2c
2.5× 10−4

D Diffusion L2/t 5× 10−4 cm2/s D∗

R∗V ∗c
5× 10−2

ν Kinematic viscosity L2/t µ
ρ = 10−2cm2/s ν∗

R∗V ∗c
1

Re Reynolds number 1 ρRVc

µ = 1 Re 1

γ Self-focusing scale L Re αβ
8D = 3× 10−5 cm γ∗

R∗ 3× 10−5

Q0 flow rate L3/t 10−2 cm3/s Q0∗

R∗3/t∗ 1

Table 2.2: Non-dimensionalized parameters

Symbol Name Scale Definition
t Time t t∗

R∗/V ∗c

u Velocity L/t u∗

V ∗c

r(R) Radius L r(R)
R∗

N Cell number n N∗

n∗1R
∗3

n Concentration n/L3 n∗

n∗1

P Pressure m/t2L P∗

ρ∗V ∗2c

Table 2.3: Non-dimensionalized variables

The parameters are non-dimensionalized by characteristic parameters shown in table2.1. And other
non-dimensionalized parameters and variables are shown in table2.2and 2.3.

As a result, Equation2.8 and 2.13 are dimensionlessly converted to:

∂u

∂t
= Pz +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.20)

∂n

∂t
= − 1

r

∂

∂r

[
r

(
−βn

(
−∂u

∂r

)
−D∂n

∂r

)]
+Kp(N0 −N)n (2.21)

where Ri = µα, referred as Richardson number [Hun98].
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2.5 Constant Flow Rate Equations
In this project, in addition to fixing the pressure gradient like Kessler’s work in[Kes86b], a pre-
scribing flow rate approach is also used like Fung’s work[FBH20]. In order the determine the flow
rate Q, after multiplying r on both sides of Eq.2.20, integrate :

ˆ R

0

r
∂u

∂t
=

1

2
R2Pz +

1

Re

ˆ R

0

∂

∂r

(
r
∂u

∂r

)
dr +

ˆ R

0

Rirndr (2.22)

Insert the boundary conditions Eq.2.18, Eq.2.22 becomes:
ˆ R

0

∂ru

∂t
dr =

1

2
R2Pz +

1

Re
R

[
∂u

∂r

]
r=R

+Ri

ˆ R

0

rndr (2.23)

The flow rate Q can be determined by the integration of velocity u:

Q =

ˆ R

0

u (r) rdr = Constant, (2.24)

which means the LHS of the integrated equation Eq.2.23 is 0:

1

2
R2 ∂p

∂z
+

1

Re
R

[
∂u

∂r

]
r=R

+Ri

ˆ R

0

rndr = 0, (2.25)

with the definition of total cell number

N =

ˆ R

0

rndr, (2.26)

being plugged into Eq.2.25, the NS equation for constant flow rate is then written into:

∂u

∂t
= − 2

Re

1

R

[
∂u

∂r

]
r=R

− 2Ri

R2
N +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.27)

2.6 Numerical Method

2.6.1 Discrete Scheme for Fixing Flow Rate
Discretized Control Equations

Let us recall the equations for the fixed flow rate Eq.2.27 Eq.2.8:

∂u

∂t
= − 2

Re

1

R

[
∂u

∂r

]
r=R

− 2Ri

R2
N +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.27)

∂n

∂t
= − 1

r

∂

∂r

[
r

(
−βn

(
−∂u

∂r

)
−D∂n

∂r

)]
+Kp(N0 −N)n (2.21)

The discrete scheme of each function is:

uj+1 − uj

∆t
= − 2

Re

1

R
Kuj+1 − 2Ri

R2
N j +

1

Re

[
1

r
K1

(
(K3r)K2uj+1

)]
+Rinj (2.28)

nj+1 − nj

∆t
= −1

r
K1 β(K3r)(K3nj)(K2u) +

1

r
K1 D(K3r)K2nj+1 +KP (N0 −N)n, (2.29)

where,

K =
1

∆r

0 · · · 1
2 −2 3

2
... · · ·

...
...

...

 , K3 =
1

2


1

1

. . .
. . .
. . .

. . .

1 1
2

 (2.30)
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K1 =
1

∆r


−1 1
−1 1

. . . . . .
−1 1

 , K2 =
1

∆r


−1 1

. . . . . .
−1 1
−1 1

 (2.31)

Matrix K estimates the gradient of velocity at the wall
[
∂u
∂r

]
r=R

and K3 estimates the first-
order middle point interpolation values, i.e. ri+1/2 = ri + ri+1/2 for variable r. Matrix K2 and
K3 stands for first-order backward and forward discritization.

As a result, the scheme can be concluded as:

Guj+1 = uj +Rinj − 2Ri

R2
N j (2.32)

Hnj+1 = nj + n′j + Kcompnj (2.33)

where
G = I + ∆t

2

Re

1

R
K−∆t

1

Re

1

r
K1(K3r)K2 (2.34)

H = I−∆t
1

r
K1 D (K3r) K2 (2.35)

n′j = −∆t
1

r
K1 β(K3r)

(
K3nj

)
(K2u) (2.36)

Kcomp = ∆tKp(N0 −N) (2.37)

Numerical Integration

The total cell number and flow rate are calculated by:

N =

end−1∑
i=1

(K3Ni)(K3ri)[dr,0] (2.38)

Q =

end−1∑
i=1

(K3ui)(K3ri)[dr,0] (2.39)

Add 0 at the end of dr because the last node is not needed in this scheme.

Discretized Boundary Conditions

Recall the boundary conditions Eq.2.16, 2.17, 2.18, and 2.19. Embedded in the matrices, replace
the rows of G and H matrix as:

G (1) =
[
−3/2 2 −1/2 0 · · ·

]
(2.40)

G (end) = [· · · · · · 0 1] (2.41)

H (1) = [− 137
60 5 −5 10

3
− 5

4
1
5 0 · · ·] (2.42)

H (end) =
[
· · · 0 − 1

5
5
4 − 10

3 5 −5 137
60 + β∆r

D K4u
]
, (2.43)

where K4 =
1

∆r

[
0 · · · 1/2 −2 3/2

]
(2.44)

Initial Conditions

The initial condition of the system is set as:

u0 =
Q0π

2

2π − 4
cos(

πr

2
) (2.45)

n0 = 1 (2.46)

The Eq.2.44 aims to control u0 in a cosinusoidal shape and so that initial flow rate is equal to
Q0.
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Iteration Steps

The iteration steps are shown below:

Calculate uj+1 Guj+1 = uj + ∆tnj −∆t2Riα
R2 Nj

Update matrix Hj+1 Hj+1 (end) =
[
· · · 0 − 1

5
5
4 − 10

3 5 −5 137
60 + β∆r

D K4uj+1
]

Update nonlinear n′ n′j = −∆t 1
rK1 β(K3r)(K3nj)(K2u)

Update Kcomp Kcomp = ∆tKP (N0 −N)

Calculate n Hnj+1 = nj + n′j + Kcompnj

Table 2.4: iteration steps

Validation of Code Conservation

(a) Cell concentration distribution (b) Velocity distribution

Figure 2.1: Typical result of cell concentration and velocity distribution in down flow

(a) Cell number difference (b) Total flow rate difference

Figure 2.2: Total flow rate and cell number differences with those for the initial state

In order to proof whether the integrated flow rate and cell number change with iteration, parameters
are set consistent with that in table2.2 that is, Ri = 2.5 × 10−4, D = 5 × 10−2, Re = 1, Q0 =
1. Additionally, set the time step dt = 1 × 10−4s, nodes number of the mesh nn = 200 and
compensation coefficient Kp = 100. Converged result and snapshots of the flow and cell profile are
shown in Figure2.1a and 2.1b.
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It can be seen from the snapshots that the plume effect appears gradually and the velocity
profile converges faster to the state before the cell number, which is consistent with the theory.

Besides, the difference between the flow rate and the Q0, and the difference between the number
of cells and the initial number of cells n0 with the iteration steps are also recorded in Figure2.2a
and 2.2b.

It is clear to see the difference of cell number has a tendency to stabilise at a low value in the
order of 10−5, after a minor escalating then decreasing. And for the flow rate, the difference reach
a negative peak before gradually flattening out. As a result, the code is conserved with time within
an acceptable error range.

2.6.2 Discritization Scheme for Fixing Pressure Gradient
Discritized Control Equations

In order to include the cell-flow interaction effect while specifying the pressure gradient, relax the
− 2
Re

1
R

[
∂u
∂r

]
r=R

term in Eq.2.20 to be Pz and recall the Eq.2.21,

∂u

∂t
= Pz −

2Ri

R2
N +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.47)

∂n

∂t
= − 1

r

∂

∂r

[
r

(
−βn

(
−∂u

∂r

)
−D∂n

∂r

)]
+Kp(N0 −N)n (2.21)

Use the same definition of K matrices in Eq.2.30 2.31, the discrete scheme is then:

uj+1 − uj

∆t
= Pz −

2Ri

R2
N +

1

Re

[
1

r
K1

(
(K3r)K2uj+1

)]
+Rinj (2.48)

nj+1 − nj

∆t
= −1

r
K1 β(K3r)(K3nj)(K2u) +

1

r
K1 D(K3r)K2nj+1 +KP (N0 −N)n, (2.29)

Take the same boundary conditions as last section.

Initial Conditions

The initial conditions are set as:
u0 = cos

(πr
2

)
(2.49)

n0 = 1 (2.50)
u0 is cosinusoidal and n0 is uniform.

2.6.3 Discrete scheme for Time-period Pressure gradient
Discritized Control Equations

Choose different frequency and amplitude. Choose initial condition Q0 = 0 Set different alpha.

Pz = p̂eiωt, where ω =
2π

T
(2.51)

where A is the amplitude ω and T is the frequency and period respectively. Replace in 2.20:

∂u

∂t
= p̂eiωt − 2Ri

R2
N +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.52)

∂n

∂t
= − 1

r

∂

∂r

[
r

(
−βn

(
−∂u

∂r

)
−D∂n

∂r

)]
+Kp(N0 −N)n (2.21)

The same process of discritization is deployed as former sections.

Initial Conditions

The Q0 is set at low magnitude, try to have a minor push of the system to stabilise the performance.

u0 =
Q0π

2

2π − 4
cos(

πr

2
), where Q0 = 10−4 (2.53)

n0 = 1 (2.54)
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Chapter 3

Bifurcation and Instability of
Downflow and Upflow

3.1 Prescribing Flow Rate

Change the Richardson number Ri and plot the the concentration and velocity distribution in
Figure3.1a, 3.1b, 3.2a and 3.2b. It can be seen that in the downward flow, the higher Ri, the higher
the central concentration and velocity. And in upward flow, the position of the high concentration
peak coincide with the location of the peak reverse flow velocity and doesn’t change with the Ri.
In either case, when Ri increases to the critical Ri, the code blows up with the profiles becoming
considerable sharp, which will be explained further.

(a) Cell concentration with Ri. As Ri increases, more cells
move to the wall

(b) Velocity distribution with Ri. As Ri increases, reverse
flow near the wall becomes more intense

Figure 3.1: Cell concentration and velocity distribution with Ri when Q0 = −2e− 2.

(a) Cell concentration with Ri. As Ri increases, plume effect
is more obvious

(b) Velocity distribution with Ri. As Ri increases, central
velocity increases.

Figure 3.2: Cell concentration and velocity distribution with Ri in downward flow at Q0 = 1e− 1.
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3.1.1 Result of High Flow Rates

To take into account of the flow rate influence to the system, the central cell concentration n(0)
and velocity u(0) for different Richardson number Ri and flow rate Q are documented and plotted
with horizontal axis Ri in Figure3.4. Different lines stand for different flow rates Q.

As mentioned earlier, each condition(flow rate) has a critical Ri after which the system diverges.
It can be also be seen from Figure3.3a that the critical Ri of each line has a saddle-noddle bifur-
cation at Ricritical = 8. Take the definition of γ = Re Ri β

8D in Kessler’s article[Kes86b]. Through
analysis, if γ → 1, the system will analytically become unstable. The detailed derivation is in
Appendix A. Replace Ricritical = 8, the γcritical = 1, which is consistent with Kessler’s result.

(a) Central cell concentration diagram (b) Central velocity diagram

Figure 3.3: Central cell concentration and velocity with Ri and Q

3.1.2 Result of Low Negative and Positive Flow Rates

In order to explore the bifurcation at Q = 0. In the case of low flow rate, the same parameters
are used except the flow rate range is set by [−3× 10−2, 4× 10−2]. Figure3.4 and 3.5 display the
centreline cell concentration and velocity. It can be seen that the bifurcation Ri is around 25,
which is consistent with Fung’s work in [FBH20].

(a) Vertical normal axis (b) Vertical logarithmic axis.

Figure 3.4: Central cell concentration with Ri
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Figure 3.5: Central velocity concentration with Ri

3.2 Prescribing Pressure Gradient

3.2.1 Combine All Data into One Chart

In this section, the pressure gradient is fixed instead of the flow rate. Use different sets of initial
flow rate and pressure gradients. 35 sets of data are combined. As shown in the Figure3.6 and 3.7,
different marker colours represent different initial flow rate Q0, and different line colours stand for
different pressure gradients pz. The “*” markers represent the end or start of each line.

Can be seen that

• all lines with a same pz coincide with each other no matter what Q0 is;

• for pz > 0 Q0 ≤ 0, data always converge.

• for pz > 0 Q0 > 0, data diverge at one critical Ri. The critical Ri becomes bigger with
smaller magnitude of Q0;

• for pz < 0 Q0 ≥ 0, data diverge at one critical Ri.

• for pz < 0 Q0 < 0, data diverge then come back to convergence, the divergence gap extended
with bigger magnitude of pz and smaller magnitude of Q0;

Figure 3.6: Centerline cell concentration changing with different Ri, pressure gradient and initial flow rate, with
vertical axis in logarithmic axis.
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Figure 3.7: Central velocity changing with different Ri, pressure gradient and initial flow rate, with vertical axis in
logarithmic axis

3.2.2 Look into How the Initial Condition Affect the Convergence Per-
formance for Negative Pressure Gradient

Cell and Velocity Distribution Varying with Time

Take pz = −2 and Ri = 30, set different value of Q0, plot the cell concentration and velocity distri-
bution in snapshots Figure3.8 to 3.13, 4 initial flow rate conditions are used, Q0 = −0.5,−1,−2,−4.

Figure 3.8: Snapshot1: In all cases, the cells immediately move to the wall. The higher the gradient on the wall, the
greater the initial flow Q0. Central velocities start to drop from the highest point related to the initial conditions.
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Figure 3.9: Snapshot2: Cells start to move to the centre from the wall; flows keep being pushed down for all lines.
Q1 becomes positive (positive direction down for velocity).

Figure 3.10: Snapshot3: For yellow and purple lines, the cell, velocity profiles and flow rate become relatively stable.
For blue and orange lines, cells keep moving to the centre, Q1, Q2 > 0.

Figure 3.11: Snapshot4: For yellow and purple lines, cells move to the wall gradually to the convergence; velocity
profiles go up gradually to stable. For the blue line, cell concentration and velocity distributions become opposite
to the beginning curve. The orange line is one step behind the blue line.
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Figure 3.12: Snapshot5: For yellow and purple lines, cells and velocity profiles continue move to the convergence;
The blue line is converged. The orange line is one step behind from the blue line.

Figure 3.13: Snapshot6: The yellow and purple lines are converged and coincide with each other; the blue and
orange lines diverge.

How This Happen

Consider the interactive effect between pz, cell locomotion and the flow velocity distribution:

• pz < 0 ⇒ the flow is pushed upward;

• pz < 0 ⇒ the flow is pushed downward;

• Cells move to the wall ⇔ the flow tends to go upward (Q goes negative);

• Cells move to the centre ⇔ the flow tends to go downward (Q goes positive);

(a) Case 1: unstable (b) Case 2: stable

Figure 3.14: Schematic diagrams of 2 cases, watermelon line and the blue line stands for velocity and cell concen-
tration profile separately. Case 1 is unstable in a negative pz environment, and case 2 is stable.

At the start, with a negative initial Q0, all lines shape like case2.
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From the perspective of the influences of the flow i.e. velocity profile. The negative pz pushes
the flow downward to case1, but the initial cell distribution tends to keep the flow at case2. If pz
is stronger relative to the flow, that is, the magnitude of Q0 is small, the flow will be pushed to
case 1 then diverges. If the initial cell distribution is stronger, the system will eventually become
stable in case2.

As a result, as described in Section 3.2.1, the diverge gap widens with a bigger magnitude of pz
and smaller magnitude of Q0 for pz < 0 Q0 < 0 because that bigger magnitude of pz and smaller
magnitude of Q0 requires stronger cell profile i.e. bigger Ri to converge.

(a) Flow rates changing with time for different Q0

(b) Boundary of the bifurcation

Figure 3.15: Flow rates changing with time for Ri = 30.

The above figure 3.15a shows the flow rate changes under 6 conditions (including the above 4
conditions).

It can be seen that at the start, flow rates all shoot up to a point (snapshot 1 Figure3.8). Under
the converged conditions, the data gradually drop back to the converged result. But for the diverged
conditions, the flow rate reaches a turning point, but still rise to divergence (Figure3.11 and 3.13),
which is consistence of the snapshots shown in Figure3.8 to 3.13. Increase the resolution to find
the critical divergence value of Q0 = −1.143. A obvious trend of bifurcation can be manifested in
Figure3.15b.

It seems there exist an edge state flow rate around 0 under this specific condition. And the
edge state snapshot for velocity and cell concentration distribution is plotted in Figure3.16.

In order to investigate the edge states value of flow rate Q under different Ri number, with the
resolution for each state increased to 10−6, in Figure3.17, the flow rate Q0 changes with time for
each edge condition is plotted.

Figure 3.16: Snapshot: edge state between 2 conditions in either sides of the case for pz = −2 Ri = 30
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Figure 3.17: Flow rates changing with time for Ri from 25 to 100, the dashed line indicates the horizontal 0 line to
show the fact that the system can drop to convergence even the flow rate rise to positive

It is clear that the flow rate at the boundary remains a long time before the bifurcation. In
addition, unfortunately, the edge Q exceeds 0, that is, the edge state for this system is not 0. More
work needs to be done to find the edge state.

Furthermore, more pz and Ri are set in order to find a tendency of critical Q0 and edge state
flow rate. The result is shown in Figure3.18.

Figure 3.18: Flow rates changing with time for Ri = 30.
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From Figure3.18, the dashed lines stand for the trend of the edge state flow rate. Although it is
hard to define an edge state (for instance, it is difficult to locate the edge state flow rate under the
condition of Ri = 100 in Figure3.17 because of the bump occurring before the edge state, and the
bump becomes more obvious for a bigger Ri as shown in Figure3.19d), the lines for different pz are
surely cross with each other despite the error. The solid lines stand for the changes of critical Q0

with the Richardson number, the regular pattern is not surprising to be logarithmic. The critical
initial flow rate Q0 decrease with the Ri. Besides, there exist a critical Ri, before which the system
will not converge. But no critical Ri is found at the other end.

Look deeper on how the diverged edge state flow rate varies with different pz and Ri. From
the Figure3.19 below, A bump occurs when Ri is big enough and when it’s hard to define the edge
state flow rate. As a result, the edge state is at least a function of Ri.

(a) Ri=30 (b) Ri=50

(c) Ri=200 (d) Ri=400

Figure 3.19: Flow rates changes with time for different pz and Ri.
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Chapter 4

Pulsatile Flow

4.1 State Space System

Non-linear State Space System

Recall the control function of the system Eq.2.48 and Eq.2.21.

∂u

∂t
= Pz −

2Ri

R2
N +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+Rin (2.47)

∂n

∂t
= − 1

r

∂

∂r

[
r

(
−βn

(
−∂u

∂r

)
−D∂n

∂r

)]
+Kp(N0 −N)n (2.21)

where
Pz = p̂eiωt, where ω =

2π

T
(2.51)

The discretised form is:

u̇ =
1

Re

[
1

r
K1 ((K3r)K2)

]
u +Rin− 2Ri

R2
N + Pz (4.1)

ṅ =
1

r
K1 D(K3r)K2n− 1

r
K1 β(K3r)(K3n)(K2u) (4.2)

where the pressure gradient is sinusoidal related to the time as:

K1 =
1

∆r


−1 1
−1 1

. . . . . .
−1 1

 , K2 =
1

∆r


−1 1

. . . . . .
−1 1
−1 1

 , (2.31)

K3 =
1

2


1 1

. . . . . .
1 1

2

 (2.30)

Same as mentioned before in Chapter2, K1 and K2 represent the first order forward and
backward discretization respectively. K3 is for estimating the middle point values.

The system can then be expressed in a form of long vector combining velocity and concentration
values:

˙[u
n

]
=

[
1
Re

[
1
rK1 ((K3r)K2)

]
RiI

0 1
rK1 D(K3r)K2

] [
u
n

]
+

[
0

− 1
rK1 β(K3r)K2uK3n

]
(4.3)

+

[
−2RiN/R2

0

]
+

[
1
0

]
Pz (4.4)
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Linearized State Space System

Define new matrices to simplify the process in form:

˙[u
n

]
=

[
K′1 RiI
0 K′2

] [
u
n

]
+

[
0

K′3 (K2u) (K3n)

]
+

[
−2RiN/R2

0

]
+

[
1
0

]
Pz (4.5)

Separate u,n and Pz into base state and vibrating state:

u = u0 + εu1 + . . .

n = n0 + εn1 + . . .

Pz = P0 + εP1 + . . .

(4.6)

The non-linear term can be expressed as(ignore the minimal value):

(K2u) (K3n) = K2(u0 + εu1 + . . .)K3(n0 + εn1 + . . .)

= (K2u0)(K3n0) + (K2εu1)(K3n0) + (K2u0)(K3εn1) + ε2K2u1K3n1 . . .
(4.7)

The Eq.4.5 become:

˙[u0

n0

]
+

˙[
εu1

εn1

]
=

[
K1′ Ri

0 K2′

]([
u0

n0

]
+

[
εu1

εn1

])
+

[
0

K′3 (K2u0) (K3n0)

]

+

[
0 0

K′3 (K3n0) K2 K′3 (K2u0) K3

] [
εu1

εn1

]
+

[
− 2RiN

R2

0

]
+


1
...
0
...

 (P0 + εP1)

(4.8)

In this project, u0 = 0, n0 = 1, substitute in Eq.4.8 with non-linear terms cancelled out:

˙[u1

n1

]
=

[
K1′ Ri

K′3K2 K2′

] [
u1

n1

]
+


1
...
0
...

P1 (4.9)

The linearised state space system then can be written as with the output as the centreline
velocity u(0):

ẋ = Ax + Bp1

y = Cx + Dp1
(4.10)

where:

x =

[
u1

n1

]
, y = εu (0)

A =

[
K′1 RiI

K′3K2 K′2

]
, B =


1
...
0
...

 , C =
[
0 . . . 0 1 0 . . . 0

]
, D = [0]

K′1 =
1

Re

[
1

r
K1 ((K3r)K2)

]
, K′2 =

1

r
K1 D (K3r) K2, K′3 = −1

r
K1 β(K3r)

(4.11)

4.2 Effects of Different Parameters

From the linearized state space model, the performance of the system can be influenced by Re, D
and β. In this project, the effect of Reynolds number are mainly discussed.
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Reynolds Number Effect

In Figure4.1, the bode diagram for the amplitude of the centreline velocity is shown with different
Re numbers. It can be seen that the data diverge at RE = 3 and Re = 4 before a critical frequency
ω. It is interesting because when set the pressure gradient as steady, which is equivalent to the
case of ω = 0, the system converges to a steady value and not diverge. If the system diverge in the
steady state, it is not surprising that it diverges before a certain critical frequency.

Figure 4.1: Bode diagram for the amplitude of central line velocity u(0) scaled by steady state central line velocity
us for different Reynolds number. us are calculated by setting the pressure gradient to be stable at 1 and extracting
the central velocity from the converged result. The amplitude is calculated by calculated the difference between the
maximum and minimum value of the data after a long period such that the system is vibrating stably.

In order to investigate the divergence mechanism, the oscillation of central velocity and cell con-
centrations with time on the divergence boundary are plotted in Figure4.2a and 4.2b for Reynolds
number being equal to 4.

(a) Central velocity change (b) Central concentration change

Figure 4.2: Oscillation of concentration velocity and cell concentration at Re = 4

Can be seen after two periods of the oscillation, the red line representing the condition at
a frequency of f = 0.0500 blows up. The central-line velocity difference with the value of blue
line at f = 0.0513 becomes increasingly bigger with time. After the third peak, it seems that the
backward pressure gradient fails to darg the system back from the divergence. Although due to the
indirect influence of the backward pressure gradient experienced by the system, a small resistance
is experienced near t = 41s, the cell concentration still rapidly reaches an extremely high level.

The snapshots of the velocity and concentration distribution are also shown from Figure4.3 to
4.7.
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Figure 4.3: Snapshot1: t = 1
4
Tf=0.05, the cell moves to the wall and velocity towards up. Little difference on the

peak value occurs because of the minor frequency difference as well as the resultant time for development. (Period
is not exact because of a minor initial velocity profile are imposed at first to stabilise the system)

Figure 4.4: Snapshot2: T = 3
4
Tf=0.05, the cell moves to the centre smoothly to the peak due to the negative velocity

profile. The difference on the peak value becomes bigger

Figure 4.5: Snapshot3: T = 5
4
Tf=0.05, the peak value of each state is smaller than former period value, indicating

that both systems are still not stable.

Figure 4.6: Snapshot4: T = 7
4
Tf=0.05
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Figure 4.7: Snapshot4: T = 7
4
Tf=0.05 + 3.68s, with a negative pressure gradient, comparing with Figure4.6 the

velocity profile for the blue line is pushed upward but that for the red line is still increase downward and finally to
divergence.

The reason for this performance is very similar to that in last chapter. At certain stage the
pressure gradient can not maintain the velocity distribution stable because the cell distribution
strength goes too much that a positive pressure gradient will not push the flow profile back to the
profile like the case 2 shown in the schematic diagram Figure3.14.

Furthermore, a bigger Reynolds number represents a stronger velocity profile, the system will
less prone to be influenced by cell distribution, as a result the critical frequency is smaller enough
such that the cell profile is enough extreme to influence the flow to be stable.

Other Parameters’ Effects

The effects of other parameters are also documented in Figure4.8. Can be seen the regular patterns
are similar to that of Reynolds number in Figure4.1. The distance between different conditions de-
crease from either side of the diverge area. Furthermore, the bigger Ri, smaller β and smaller D has
a smaller relative magnitude. Further investigation is needed to explore more of the performance.
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(a) Different Richanson number (b) Different β

(c) Different D

Figure 4.8: Bode diagram for the amplitude of central line velocity u(0) scaled by steady state central line velocity
us for different Ri, β and D
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Chapter 5

Conclusion and Evaluation

5.1 Modelling

In this project, an unsteady solver with constant flow rate and pressure gradient based on Kessler’s
1986 model [Kes86b] are developed, semi-implicit first order disicritisation scheme are taken for
cell conservation law. And pure implicit first order discritisation scheme are taken for momentum
equation. The code is validate with a typical parameters

The first important lesson is that the conservation form of disicritisation, and the order of the
boundary condition makes a great difference on the conservation of the cell number, or total flow
rate. The second lesson is that the compensation coefficient Kp should scale with different time
step dt, and a negative flow rate requires a negative Kp . Besides, non-equal-spaced mesh are tried
to apply but it needs more mathematical manipulation of the inhomogeneous.

The model can be optimised by utilising a scheme of discritization, or interpolation of the
middle point with higher order and more accuracy. Besides, different way of modelling the random
swimming behaviour of the microorganisms can also be applied instead of using a simple diffusion
coefficient.

5.2 Bifurcations Under Different Fixed Flow Rate Conditions

In this section, first the converged cell concentration and velocity distributions for different Ri are
plotted together in upflow and downflow separately. One found is that the locations of the peak
coincide with the that of the flow velocity, and does not change with the Ri. Another is that a
divergence will be expected with high Ri form the fact that the peak values increase with higher
Ri.

As a result, by setting a sequence of Ri, the bifurcation point at Ri = 8 is found consistent
with Kessler’s analytical result.

Furthermore, in order to investigate the conditions near the 0 point, another bifurcation point
is also documented at Ri = 25 matching Fung’s result qualitatively.

5.3 Bifurcations Under Different Fixed Pressure Gradient
Conditions

In this section, different pressure gradient and initial flow rate are applied and one interesting
bifurcation is found, that is a divergence then convergence performance manifests for pz < 0Q0 < 0.
The divergence gap widens with a bigger magnitude of pz. An explanation is given by viewing the
snapshots of the velocity and concentration distributions. The cell concentration profile and the
pressure gradient influence the velocity profile in opposite directions. As a result, bigger magnitude
of pz and smaller magnitude of Q0 requires bigger Ri to converge the system.

The attempt of finding the edge state are partially failed. The zero flow rate is proved not to
be the edge state condition by adding the resolution of the Q0 and find the edge state flow rate
at different Ri and pz conditions. However, the pattern of the critical Q0 in this type of initial
condition is clear to be logarithmic, and the magnitude of critical Q0 is smaller with bigger Ri.
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Further researches can be done to investigate more on the edge state by adding the resolution
of the Q0 to find more accurate edge states for different Ri, or changing different type of initial
condition, (sine-like or parabolic) to find an same type of edge state.

5.4 Pulsatile Flow Under Sinusoidal Wave Pressure Gradient
In this part, the linearied state space system is derived and different parameters’ effect are inves-
tigated. The diverge area is found for Reynolds number condition and the explanation is given
qualitatively by look into the central velocity and concentration, and the profiles changing with
time.

More blank is left in this section, more patches of conditions for Reynolds number, β and D
in the order of 1, and wider range of frequencies should be taken to investigate the divergence
performance. Besides from the fact that the steady station converges, i.e. the system converges
when ω = 0.
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Appendix A

Derivation of cell conservation law
and the analytical results

A.1 Cell conservation law

The conservation of cell number (N = nv) is:

∂n

∂t
dv +

∑
out

N −
∑
in

N = 0 (A.1)

In x direction:

Figure A.1: Cell conservation law on horizontal direction in a flow cell

combined the 3 directions∑
in

N −
∑
out

N =

[
∂

∂x
(nu) dx

]
dydz +

[
∂

∂y
(nv) dy

]
dxdz + [

∂

∂z
(nw)dz]dxdy (A.2)

As a result:

∂n

∂t
dxdydz =

[
∂

∂x
(nu) +

∂

∂y
(nv) +

∂

∂z
(nw)

]
dxdydz (A.3)

or,
∂n

∂t
+∇ (nu) = 0

Add flux:

∂n

∂t
+∇ (nu) = ∇j (A.4)

With assumptions:

∇ (nu) = u∇n (A.5)

∇j =
1

r

∂

∂r
(rj) (A.6)
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As a result

∂n

∂t
+ u∇n =

1

r

∂

∂r
(rj) (A.7)

Add α to Navier-Stokes equation

∂u

∂t
= −Pz +

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+ αn (A.8)

Analytical steady equations

u∇n =
1

r

∂

∂r
(rj) (A.9)

0 = −Pz +
1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+ αn (A.10)

where:

j = −nβ du
dr
−Ddn

dr
(A.11)

A.2 Solve n(r) Analytically

Cell conservation law with no flux:

j = −nβ du
dr
−Ddn

dr
= 0 (A.12)

⇔n = n(0)e−(β/D)(u−u(0)) (A.13)

Where n(0) and u(0) are cell concentration and velocity at the centre. NS equation

0 = −Pz +
1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)]
+ αn (A.14)

1

r

∂

∂r

(
r
∂u

∂r

)
= −Re αn+Re Pz (A.15)

Combine Eq.A.15 and Eq.A.13.

log n = − β
D

(u− u(0)) log n(0) (A.16)

− 1

r

∂

∂r

(
r
∂ log n

∂r

)
= −Re αβ

D
n+

Re β

D
Pz (A.17)

With Pz = 0:

1

r

∂

∂r

(
r
∂ log n

∂r

)
=

Re αβ

D
n (A.18)

n (r) =
n (0)

(1 + γn (0) r2)
2 (A.19)

where

γ =
Re Riβ

8D
(A.20)
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Solve n(0) Analytically

Set an average concentration n0 such that

n0 =

‚
s
ndA

A
(A.21)

Replace n according to Eq.A.19
ˆ R

0

n (r) rdr =
1

2
n0R

2 (A.22)

or

n (0)R2

1 + γn (0)R2
= n0R

2

As a result, when γn (0)R2 → 1, the code blows up.
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Appendix B

Matlab codes

B.1 Fixing the flow rate

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Solve a trainsent 1D laminar downflow pipe flow %
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % PDE non−dimentional):
5 % du/dt= −2/Re 1/R [du/dr]_(r=R)−2Ri/R^2 N+1/Re [1/r d/dr(rdu/dr)]+Ri n
6 % dn/dt=−1/r d/dr[beta rn du/dr+Dr dn/dr]+Kp(N0−N)n
7 % Method:
8 % semi−implicit finite difference,forword time,central space discritization
9 % Boundary condition:

10 % r = 0 −− dn/dr = 0 symmetric boundary
11 % r = 0 −− du/dr = 0 symmetric boundary
12 % r = R −− dn/dt = −n beta /D 2R wall boundary
13 % r = R −− u = 0 wall boundary
14 % Initial condition:
15 % n = 1, u = (Q0 pi^2)/(2pi−4)
16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 % Author: Songrui LI %
18 % Date: June 23rd %
19 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
20

21 %house keeping
22 clear,clc;
23 close all;
24

25 %% Preparation
26 %set mesh dimension, time step and initailize u
27 R = 1; % Radius of pipe
28 n=200; % Non_Boundary number of nodes
29 dt = 1e−3; % Time step
30 r= [linspace(0,R,n)]; % Mesh (equal space discretisation)
31 dr = r(2:end)−r(1:end−1); % space step
32 Kp= 100 ; % compensate term
33

34 %for saving snap shot
35 %snap = [1:200/dt];
36 snap = [0];
37 sn = 1;
38 x_snap = zeros(length(snap),2*n);
39

40 %set max iteration number
41 iter_number=5e6;
42 %set max and min residual
43 Res_max = 1e3;
44 Res_min = 1e−10;
45

46 %set flow parameter
47 pz = −4; % pressure
48 Q0 = −1.004; % flow rate
49 titl = '1−4−50−1_004';
50 D = 5e−2; % Diffusivity of cells
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51 beta = 5e−2; % Gyrotastic length
52 Re = 1; % Reynolds number
53

54 % start different parameters
55 alpha_loop = [50]'; % bouyant rate
56

57 u_loop = zeros(length(alpha_loop),n); % results
58 N_loop = zeros(length(alpha_loop),n); % results
59 Q_loop = zeros(length(alpha_loop),1); % results
60

61 for Loop = 1:length(alpha_loop)
62 alpha = alpha_loop( Loop);
63

64 %set initial condition and save
65 N = ones(1,n);
66 u = Q0*pi*pi/(2*pi−4)*cos(pi*r/2);
67 N0 = N;
68 u0 = u;
69 x = [u,N];
70 x0 = [u0,N0];
71

72 %% set iteration
73 %% matrix K3 midpoint interpolation
74 %first order
75 K3 = sparse(diag([1*ones(1,n−1),2])+diag(1*ones(1,n−1),1));
76 K3 = 1/2*K3;
77

78 % %second order Lagrange Midpoint Interpolation
79 % ...

%https://d3cw3dd2w32x2b.cloudfront.net/wp−content/uploads/2011/06/dyadic_interpolation.pdf
80 % K3 = ...

sparse(diag(9/16*ones(1,n))+diag(9/16*ones(1,n−1),1)+diag(−1/16*ones(1,n−2),2)+diag(−1/16*ones(1,n−1),−1));
81 % K3(1,:)=[1/2,1/2,zeros(1,n−2)];
82 % K3(end−1,:)=[zeros(1,n−2),1/2,1/2];
83 % K3(end,:)=[zeros(1,n−1),1];
84

85 %% parameters
86 t = 0; % Current time
87 x_1 = x0; % Save result of one timestep afterwards
88 RES = [0]; % Save all residual data
89 Num = [Num_int(dr,K3,N0,r)]; % Save all cell number data
90 Q = [Q_int(dr,K3,u0,r)]; % Save all cell number data
91

92 %% set K,K1 and K2:
93 %matrix K second order
94 K = sparse(zeros(n));
95 K(:,end)=3/2;
96 K(:,end−1)=−2;
97 K(:,end−2)=1/2;
98 K = 1/dr(end)*K;
99 %matrix K4

100 K4 = sparse([zeros(1,n−3),1/2,−2,3/2]);
101 K4 = 1/dr(end)*K4;
102 %matrix K1
103 K1 = sparse(diag([−1,1*ones(1,n−1)])+diag(−1*ones(1,n−1),−1));
104 K1(1,2) = 1;
105 K1 = 1./[dr(1),dr]'.*K1;
106 %matrix K2
107 K2 = sparse(diag([−1*ones(1,n−1),1])+diag(ones(1,n−1),1));
108 K2(end,end−1) = −1;
109 K2 = 1./[dr,dr(end)]'.*K2;
110

111 % %second order
112 % %matrix K1
113 % K1 = sparse(diag(3/2*ones(1,n))+diag(−2*ones(1,n−1),−1)+diag(1/2*ones(1,n−2),−2));
114 % K1(1,:)=[−3/2,2,−1/2,zeros(1,n−3)];
115 % K1(2,:)=[−1/2,0,1/2,zeros(1,n−3)];
116 % K1 = 1./[dr(1),dr].*K1;
117 % %matrix K2
118 % K2 = sparse(diag(−3/2*ones(1,n))+diag(2*ones(1,n−1),1)+diag(−1/2*ones(1,n−2),2));
119 % K2(end,:)=[zeros(1,n−3),1/2,−2,3/2];
120 % K2(end−1,:)=[zeros(1,n−3),−1/2,0,1/2];
121 % K2 = 1./[dr,dr(end)].*K2;
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122

123 %% set G
124 %matrix G
125 G = sparse(eye(n)−dt/Re*diag(1./r')*K1*(diag(K3*r')*K2));
126 G(1,:)=[−3/2,2,−1/2,zeros(1,n−3)];
127 G(n,:)=[zeros(1,n−1),1];
128 % matrix H
129 H = sparse(eye(n)−dt*diag(1./r)*K1*(D*diag(K3*r')*K2));
130 H(1,:)=[−137/60,5,−5,10/3,−5/4,1/5,zeros(1,n−6)];
131 H(end,:)=[zeros(1,n−6),−1/5,5/4,−10/3,5,−5,0];
132 %% start iteration
133 for iter=1:iter_number
134

135 % next time step N_1
136 % calculate K_comp and K_H
137 K_comp = sparse(dt*Kp*(Num(1)−Num(end))*eye(n));
138

139 %step 1
140 u_1=u'−dt*pz+dt*alpha*N'−2*dt*alpha/R/R*Num(1);
141 u_1(1)=0;
142 u_1(end)=0;
143 u_1=(G\u_1)';
144 % step 2
145 H(end,end)=137/60−beta/D*dr(end)*K4*u_1';
146 N_1=N'−dt*diag(1./r)*K1*beta*diag(K3*r')*((K3*N').*(K2*u'))+K_comp*N';
147 N_1(1)=0;
148 N_1(end)=0;
149 N_1=(H\N_1)';
150

151 % combine x_1
152 x_1 = [u_1 N_1];
153

154 % claculate residual and save
155 Res = norm(x−x_1);
156 RES = [RES, Res];
157

158 % update x
159 x = x_1;
160 u = x(1:n);
161 N = x(n+1:end);
162

163 %calculate and save cell number
164 Num = [Num,Num_int(dr,K3,N,r)];
165 %calculate and save cell number
166 Q = [Q,Q_int(dr,K3,u,r)];
167

168 % update time and display with Res
169 t = t+dt;
170 % disp('current time t and Residual Res: ')
171 % disp([t, Res])
172

173 % save snapshot
174 if length(snap) ≥ sn && iter == snap(sn)
175 x_snap(sn,:) = x;
176 sn = sn+1;
177 end
178

179 %realtime plot
180 %pic(r,R,n_t,x,x0,dt,RES,sn,x_snap,Num,Q,Kp)
181

182 % %stop at a time
183 % if t>1
184 % break;
185 % end
186

187 %define convergance
188 if conv(Res, Res_max, Res_min,t)
189 disp('t, Res,alpha')
190 disp([t, Res,alpha])
191 break;
192 end
193 end
194

38



195 %% plot final result
196 pic(r,R,n,x,x0,dt,RES,sn,x_snap,Num,Q,Kp,alpha);
197

198 %% end loop
199

200 u_loop(Loop,:) = u;
201 N_loop(Loop,:) = N;
202 Q_loop(Loop,:) = Q(end);
203 end
204

205 %save(titl)
206 %% fuctions
207 %% calculate Q
208 function Q= Q_int(dr,K3,u,r)
209 u_Q=K3*u';
210 r_Q=K3*r';
211 Q = [(dr.*u_Q(1:end−1)')*r_Q(1:end−1)]; % Save all Q ...

data, Q(1)=Q(0)
212 end
213

214 %% calculate Num
215 function Num= Num_int(dr,K3,N,r)
216 N_Q=K3*N';
217 r_Q=K3*r';
218 Num = [(dr.*N_Q(1:end−1)')*r_Q(1:end−1)]; % Save all Q ...

data, Q(1)=Q(0)
219 end
220

221 %% define convergance
222 function conv = conv(Res, Res_max, Res_min,t)
223 if (Res>Res_max || 0) %check the residual
224 disp('what a pity U DIverged');
225 conv = 1;
226 elseif Res<Res_min
227 disp('OMG Congrats finally U CONverged');
228 % disp('Converged time:')
229 % disp(t)
230 conv = 1;
231 else
232 conv = 0;
233 end
234 end
235

236 %% plot
237 function pic = pic(r,R,n_t,x,x0,dt,RES,sn,x_snap,Num,Q,Kp,alpha)
238 figure(1) % plot result
239 subplot(2,1,1);
240 % plot(linspace(−R,R,2*n−1),[fliplr(x0(n+2:end)),x0(n+1:end)])
241 % hold on
242 % if sn > 1
243 % for sn1 = 1:sn−1
244 % ...

plot(linspace(−R,R,2*n−1),[fliplr(x_snap(sn1,n+2:end)),x_snap(sn1,n+1:end)])
245 % end
246 % end
247 plot([−1*fliplr(r(2:end)),r],[fliplr(x(n_t+2:end)),x(n_t+1:end)])
248 tit = append("n(r), dt = ",string(dt),"s, ","Kp= ",string(Kp), " Ri = ...

",string(alpha));
249 title(tit)
250 xlabel('r')
251 ylabel('n')
252 % legend({'t_0','t_1','t_2','t_3' 't_4','conv.'},'Location','southwest')
253 hold on
254

255 subplot(2,1,2);
256 % plot(linspace(−R,R,2*n−1),[fliplr(x0(2:n)),x0(1:n)])
257 % hold on
258 % if sn > 1
259 % for sn1 = 1:sn−1
260 % plot(linspace(−R,R,2*n−1),[fliplr(x_snap(sn1,2:n)),x_snap(sn1,1:n)])
261 % end
262 % end
263 plot([−1*fliplr(r(2:end)),r],[fliplr(x(2:n_t)),x(1:n_t)])
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264 set(gca,'Ydir','reverse'); % Reverse the axis for better looking
265 tit = append("u(r), dt = ",string(dt),"s, Ri = ",string(alpha));
266 title(tit)
267 xlabel('r')
268 ylabel('u')
269 % legend({'t_0','t_1','t_2','t_3' 't_4','conv.'},'Location','southwest')
270 % hold off
271 hold on
272 set(gcf, 'Position', [750, 50, 600, 700])
273 drawnow
274

275 figure(2) % plot Num and Q
276 %plot flow rate
277 subplot(2,1,1);
278 plot(dt:dt:(length(Q)−1)*dt,Q(2:end)−Q(1))
279 tit = append("flow rate difference with Q0(t), dt = ",string(dt),"s");
280 title(tit)
281 xlabel('t')
282 ylabel('Q−Q0')
283 set(gcf, 'Position', [150, 50, 600, 700])
284 drawnow
285 hold on
286

287 %plot cell number
288 subplot(2,1,2);
289 plot(dt:dt:(length(Num)−1)*dt,Num(2:end)−Num(1))
290 tit = append("cell number difference with N0(t), dt = ",string(dt),"s, ","Kp= ...

",string(Kp));
291 title(tit)
292 xlabel('t')
293 ylabel('Num−Num0')
294 hold on
295 drawnow
296

297 % figure(3) % plot Residual
298 % plot(dt:dt:(length(RES)−1)*dt,RES(2:end))
299 % title('Residual(t)')
300 % xlabel('t')
301 % ylabel('Res')
302 end

B.2 Shaking the pressure gradient

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Solve a trainsent 1D laminar downflow pipe flow %
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % PDE non−dimentional):
5 % du/dt= pz −2/Re 1/R [du/dr]_(r=R)+1/Re [1/r d/dr(rdu/dr)]+Ri n
6 % dn/dt=−1/r d/dr[beta rn du/dr+Dr dn/dr]+Kp(N0−N)n
7 % Method:
8 % semi−implicit finite difference,forword time,central space discritization
9 % Boundary condition:

10 % r = 0 −− dn/dr = 0 symmetric boundary
11 % r = 0 −− du/dr = 0 symmetric boundary
12 % r = R −− dn/dt = −n beta /D 2R wall boundary
13 % r = R −− u = 0 wall boundary
14 % Initial condition:
15 % n = 1, u = (Q0 pi^2)/(2pi−4)
16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
17 % Author: Songrui LI %
18 % Date: June 23rd %
19 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
20

21 %house keeping
22 clear,clc;
23 close all;
24

25 %% Preparation
26 %set mesh dimension, time step and initailize u
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27 R = 1; % Radius of pipe
28 n=200; % Non_Boundary number of nodes
29 dt = 1e−3; % Time step
30 r= [linspace(0,R,n)]; % Mesh (equal space discretisation)
31 dr = r(2:end)−r(1:end−1); % space step
32 Kp= 100 ; % compensate term
33

34 % %for save snap shot
35 % snap = [0];
36 % sn = 1;
37 % x_snap = zeros(length(snap),2*n);
38

39 %set max iteration number
40 iter_number=5e6;
41 %set max and min residual
42 Res_max = 1e3;
43 Res_min = 1e−6;
44

45 %set flow parameter
46 A = 1; %amplitude and period
47 alpha = 5; %period
48 titl='D_0_005';
49 Q0 = 1e−4; % flow rate
50 D = 5e−3; % Diffusivity of cells
51 beta = 5e−2; % Gyrotastic length
52 Re = 1; % Reynolds number
53

54 % start different parameters
55 %T_loop = [1:.2:8]'; % bouyant rate
56 T_loop = [1e−1:2e−1:9e−1 1:.5:20]'; % bouyant rate
57 %T_loop = [110:10:160]'; % bouyant rate
58

59 time_loop=[300*ones(1,5),300*ones(1,20),300*ones(1,17),300*ones(1,2)];
60

61 u_loop = zeros(length(T_loop),n); % results
62 N_loop = zeros(length(T_loop),n); % results
63 u0_loop = zeros(length(T_loop),200/dt); % results save first 200s
64 N0_loop = zeros(length(T_loop),200/dt); % results save first 200s
65 Q_loop = zeros(length(T_loop),1); % results
66

67 for Loop = 1:length(T_loop)
68 T = T_loop( Loop);
69 pz = append(string(A),"sin(","2pi/",string(T),"t)");
70

71 %set initial condition and save
72 N = ones(1,n);
73 %u = Q0/2*ones(1,n);
74 u = Q0*pi*pi/(2*pi−4)*cos(pi*r/2);
75 %u = −12*Q0*r.*(r−1);
76 N0 = N;
77 u0 = u;
78 x = [u,N];
79 x0 = [u0,N0];
80

81 %% set iteration
82 %% matrix K3 midpoint interpolation
83 %first order
84 K3 = sparse(diag([1*ones(1,n−1),2])+diag(1*ones(1,n−1),1));
85 K3 = 1/2*K3;
86

87 % %second order Lagrange Midpoint Interpolation
88 % ...

%https://d3cw3dd2w32x2b.cloudfront.net/wp−content/uploads/2011/06/dyadic_interpolation.pdf
89 % K3 = ...

sparse(diag(9/16*ones(1,n))+diag(9/16*ones(1,n−1),1)+diag(−1/16*ones(1,n−2),2)+diag(−1/16*ones(1,n−1),−1));
90 % K3(1,:)=[1/2,1/2,zeros(1,n−2)];
91 % K3(end−1,:)=[zeros(1,n−2),1/2,1/2];
92 % K3(end,:)=[zeros(1,n−1),1];
93

94 %% parameters
95 t = 0; % Current time
96 x_1 = x0; % Save result of one timestep afterwards
97 RES = [0]; % Save all residual data
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98 Num = [Num_int(dr,K3,N0,r)]; % Save all cell number data
99 Q = [Q_int(dr,K3,u0,r)]; % Save all cell number data

100

101 %% set K,K1 and K2:
102 %matrix K second order
103 K = sparse(zeros(n));
104 K(:,end)=3/2;
105 K(:,end−1)=−2;
106 K(:,end−2)=1/2;
107 K = 1/dr(end)*K;
108 %matrix K4
109 K4 = sparse([zeros(1,n−3),1/2,−2,3/2]);
110 K4 = 1/dr(end)*K4;
111 %matrix K1
112 K1 = sparse(diag([−1,1*ones(1,n−1)])+diag(−1*ones(1,n−1),−1));
113 K1(1,2) = 1;
114 K1 = 1./[dr(1),dr]'.*K1;
115 %matrix K2
116 K2 = sparse(diag([−1*ones(1,n−1),1])+diag(ones(1,n−1),1));
117 K2(end,end−1) = −1;
118 K2 = 1./[dr,dr(end)]'.*K2;
119

120 % %second order
121 % %matrix K1
122 % K1 = sparse(diag(3/2*ones(1,n))+diag(−2*ones(1,n−1),−1)+diag(1/2*ones(1,n−2),−2));
123 % K1(1,:)=[−3/2,2,−1/2,zeros(1,n−3)];
124 % K1(2,:)=[−1/2,0,1/2,zeros(1,n−3)];
125 % K1 = 1./[dr(1),dr].*K1;
126 % %matrix K2
127 % K2 = sparse(diag(−3/2*ones(1,n))+diag(2*ones(1,n−1),1)+diag(−1/2*ones(1,n−2),2));
128 % K2(end,:)=[zeros(1,n−3),1/2,−2,3/2];
129 % K2(end−1,:)=[zeros(1,n−3),−1/2,0,1/2];
130 % K2 = 1./[dr,dr(end)].*K2;
131

132 %% set G
133 %matrix G
134 G = sparse(eye(n)−dt/Re*diag(1./r')*K1*(diag(K3*r')*K2));
135 G(1,:)=[−3/2,2,−1/2,zeros(1,n−3)];
136 G(n,:)=[zeros(1,n−1),1];
137 % matrix H
138 H = sparse(eye(n)−dt*diag(1./r)*K1*(D*diag(K3*r')*K2));
139 H(1,:)=[−137/60,5,−5,10/3,−5/4,1/5,zeros(1,n−6)];
140 H(end,:)=[zeros(1,n−6),−1/5,5/4,−10/3,5,−5,0];
141 %% start iteration
142 for iter=1:iter_number
143

144 % next time step N_1
145 % calculate K_comp and K_H
146 K_comp = sparse(dt*Kp*(Num(1)−Num(end))*eye(n));
147 K_H = sparse(dt*Kp*(Q(1)−Q(end))*eye(n));
148

149 %step 1
150 u_1=u'−dt*(A*sin(2*pi/T*t))+dt*alpha*N'−2*dt*alpha/R/R*Num(1);
151 u_1(1)=0;
152 u_1(end)=0;
153 u_1=(G\u_1)';
154 % step 2
155 H(end,end)=137/60−beta/D*dr(end)*K4*u_1';
156 N_1=N'−dt*diag(1./r)*K1*beta*diag(K3*r')*((K3*N').*(K2*u'))+K_comp*N';
157 N_1(1)=0;
158 N_1(end)=0;
159 N_1=(H\N_1)';
160

161 % combine x_1
162 x_1 = [u_1 N_1];
163

164 % claculate residual and save
165 Res = norm(x−x_1);
166 RES = [RES, Res];
167

168 % update x
169 x = x_1;
170 u = x(1:n);
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171 N = x(n+1:end);
172

173 %calculate and save cell number
174 Num = [Num,Num_int(dr,K3,N,r)];
175 %calculate and save cell number
176 Q = [Q,Q_int(dr,K3,u,r)];
177

178 % update time and display with Res
179 t = t+dt;
180 % disp('current time t and Residual Res: ')
181 % disp([t, Res])
182

183 % % save snapshot
184 % if length(snap) ≥ sn && iter == snap(sn)
185 % x_snap(sn,:) = x;
186 % sn = sn+1;
187 % end
188

189 % save n0 and u0
190 N0_loop(Loop,iter)=N(1);
191 u0_loop(Loop,iter)=u(1);
192 %realtime plot
193 %plot_one_condition_ani(r,R,n,x,x0,dt,RES,sn,x_snap,Num,Q,Kp,alpha,pz,Q0)
194

195 %stop at a time
196 if t>time_loop(Loop)+1e−8
197 break;
198 end
199

200 % %define convergance
201 % if Conv(Res, Res_max, Res_min,t)
202 % disp('t, Res,alpha')
203 % disp([t, Res,alpha])
204 % break;
205 % end
206 end
207

208 %% plot final result
209 %pic(r,R,n,x,x0,dt,RES,0,0,Num,Q,Kp,alpha);
210

211 %% end loop
212 T
213 u_loop(Loop,:) = u;
214 N_loop(Loop,:) = N;
215 Q_loop(Loop,:) = Q(end);
216 end
217

218 save (titl);
219

220 %% fuctions
221 %% calculate Q
222 function Q= Q_int(dr,K3,u,r)
223 u_Q=K3*u';
224 r_Q=K3*r';
225 Q = [(dr.*u_Q(1:end−1)')*r_Q(1:end−1)]; % Save all Q ...

data, Q(1)=Q(0)
226 end
227

228 %% calculate Num
229 function Num= Num_int(dr,K3,N,r)
230 N_Q=K3*N';
231 r_Q=K3*r';
232 Num = [(dr.*N_Q(1:end−1)')*r_Q(1:end−1)]; % Save all Q ...

data, Q(1)=Q(0)
233 end
234

235 %% define convergance
236 function conv = Conv(Res, Res_max, Res_min,t)
237 if (Res>Res_max || 0) %check the residual
238 disp('what a pity U DIverged');
239 conv = 1;
240 elseif Res<Res_min
241 disp('OMG Congrats finally U CONverged');
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242 % disp('Converged time:')
243 % disp(t)
244 conv = 1;
245 else
246 conv = 0;
247 end
248 end
249

250 %% plot
251 function pic = pic(r,R,n_t,x,x0,dt,RES,sn,x_snap,Num,Q,Kp,alpha)
252 figure(1) % plot result
253 subplot(2,1,1);
254 % plot(linspace(−R,R,2*n−1),[fliplr(x0(n+2:end)),x0(n+1:end)])
255 % hold on
256 % if sn > 1
257 % for sn1 = 1:sn−1
258 % ...

plot(linspace(−R,R,2*n−1),[fliplr(x_snap(sn1,n+2:end)),x_snap(sn1,n+1:end)])
259 % end
260 % end
261 plot([−1*fliplr(r(2:end)),r],[fliplr(x(n_t+2:end)),x(n_t+1:end)])
262 tit = append("n(r), dt = ",string(dt),"s, ","Kp= ",string(Kp), " Ri = ...

",string(alpha));
263 title(tit)
264 xlabel('r')
265 ylabel('n')
266 % legend({'t_0','t_1','t_2','t_3' 't_4','conv.'},'Location','southwest')
267 hold on
268

269 subplot(2,1,2);
270 % plot(linspace(−R,R,2*n−1),[fliplr(x0(2:n)),x0(1:n)])
271 % hold on
272 % if sn > 1
273 % for sn1 = 1:sn−1
274 % plot(linspace(−R,R,2*n−1),[fliplr(x_snap(sn1,2:n)),x_snap(sn1,1:n)])
275 % end
276 % end
277 plot([−1*fliplr(r(2:end)),r],[fliplr(x(2:n_t)),x(1:n_t)])
278 set(gca,'Ydir','reverse'); % Reverse the axis for better looking
279 tit = append("u(r), dt = ",string(dt),"s, Ri = ",string(alpha));
280 title(tit)
281 xlabel('r')
282 ylabel('u')
283 % legend({'t_0','t_1','t_2','t_3' 't_4','conv.'},'Location','southwest')
284 % hold off
285 hold on
286 set(gcf, 'Position', [750, 50, 600, 700])
287 drawnow
288

289 figure(2) % plot Num and Q
290 %plot flow rate
291 subplot(2,1,1);
292 plot(dt:dt:(length(Q)−1)*dt,Q(2:end)−Q(1))
293 tit = append("flow rate difference with Q0(t), dt = ",string(dt),"s");
294 title(tit)
295 xlabel('t')
296 ylabel('Q−Q0')
297 set(gcf, 'Position', [150, 50, 600, 700])
298 drawnow
299 hold on
300

301 %plot cell number
302 subplot(2,1,2);
303 plot(dt:dt:(length(Num)−1)*dt,Num(2:end)−Num(1))
304 tit = append("cell number difference with N0(t), dt = ",string(dt),"s, ","Kp= ...

",string(Kp));
305 title(tit)
306 xlabel('t')
307 ylabel('Num−Num0')
308 hold on
309 drawnow
310

311 % figure(3) % plot Residual
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312 % plot(dt:dt:(length(RES)−1)*dt,RES(2:end))
313 % title('Residual(t)')
314 % xlabel('t')
315 % ylabel('Res')
316 end

B.3 Plot combined picture Figure3.7 and 3.6

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Plot resuls with different pz Ri and Q0 %
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % Author: Songrui LI %
5 % Date: July 20rd %
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 close all
8 clear
9 clc

10

11 load('data_pz_Q0.mat')
12 rng(0,'twister');
13

14 % linestyle
15 lt=["−−",':','−.','−','−−o',':*','−.*','−*'];
16

17 %linecolor
18 lc1=[207 57 89
19 209 55 165
20 173 54 210
21 98 53 211
22 52 79 212
23 51 163 213
24 50 214 183
25 49 215 100
26 80 216 48
27 205 217 47
28 218 169 49
29 220 107 44
30 222 42 42
31 223 41 123
32 ]/255;
33

34 lc2=[243 77 77
35 243 239 53
36 242 190 68
37 123 214 78
38 42 250 151
39 98 194 194
40 234 63 247
41 203 107 148
42 59 251 91
43 ]/255;
44

45

46 % plot different color
47 lcolor=[−6 −4 −2 −1 0 .5 .75 1 2 3 4];
48 linest=[−4 −3 −2 −1 0 1 2 4];
49 lindic=[8 9 10 11 12 13 14 15];
50 figure(1)
51 for i=1:35
52 name=append('p_z=',string(u(1,i)),' Q_0=',string(u(1,i)));
53

54 u0=u(3:end,i);
55 mc= lc2(u(2,i)== linest,:); %marker color
56 alpha0=alpha(u06=0);
57 u1=u0(u06=0);
58 lc=lc1(u(1,i)== lcolor,:);
59

60 lin_indic=[0:0.5*lindic(u(2,i)== linest):0.5*201]; % all marker indice
61
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62 ax1=alpha0(alpha0==[0:0.5:0.5*(length(alpha0)−1)]');
63 ay1=u1(alpha0==[0:0.5:0.5*(length(alpha0)−1)]');
64

65 mi1l=ax1==lin_indic;
66 mi1ll=false(length(ax1),1);
67 for j=1:length(lin_indic)
68 mi1ll=mi1ll|mi1l(:,j);
69 end
70 mi1=1:length(ax1);
71 mi1=mi1(mi1ll);
72

73 ax2=alpha0(alpha06=[0:0.5:0.5*(length(alpha0)−1)]');
74 ay2=u1(alpha06=[0:0.5:0.5*(length(alpha0)−1)]');
75

76 mi2l=ax2==lin_indic;
77 mi2ll=false(length(ax2),1);
78 for j=1:length(lin_indic)
79 mi2ll=mi2ll|mi2l(:,j);
80 end
81 mi2=1:length(ax2);
82 mi2=mi2(mi2ll);
83

84 plot(ax1,ay1,'−o','MarkerFaceColor',mc,'MarkerEdgeColor',mc,'MarkerIndices', ...
mi1,'MarkerSize',3,'Color', lc,'DisplayName',name);

85 hold on
86 plot(ax1(end),ay1(end),'r*','MarkerEdgeColor',mc);
87 %legend('−DynamicLegend','Location','southwest');
88 plot(ax2,ay2,'−o','MarkerFaceColor',mc,'MarkerEdgeColor',mc,'MarkerIndices', ...

mi2,'MarkerSize',3,'Color',lc);
89 if(isempty(ax2))
90 else
91 plot(ax2(1),ay2(1),'r*','MarkerEdgeColor',mc);
92 end
93 drawnow
94 end
95 xlabel('Ri');
96 ylabel('u(0)')
97 title('central velocity changing with Ri and pz and Q_0')
98

99 figure(2)
100 for i=1:29
101 name=append('p_z=',string(N(1,i)),' Q_0=',string(N(1,i)));
102

103 u0=N(3:end,i);
104 mc= lc2(N(2,i)== linest,:); %marker color
105 alpha0=alpha(u06=0);
106 u1=u0(u06=0);
107 lc=lc1(N(1,i)== lcolor,:);
108

109 lin_indic=[0:0.5*lindic(N(2,i)== linest):0.5*201]; % all marker indice
110

111 ax1=alpha0(alpha0==[0:0.5:0.5*(length(alpha0)−1)]');
112 ay1=u1(alpha0==[0:0.5:0.5*(length(alpha0)−1)]');
113

114 mi1l=ax1==lin_indic;
115 mi1ll=false(length(ax1),1);
116 for j=1:length(lin_indic)
117 mi1ll=mi1ll|mi1l(:,j);
118 end
119 mi1=1:length(ax1);
120 mi1=mi1(mi1ll);
121

122 ax2=alpha0(alpha06=[0:0.5:0.5*(length(alpha0)−1)]');
123 ay2=u1(alpha06=[0:0.5:0.5*(length(alpha0)−1)]');
124

125 mi2l=ax2==lin_indic;
126 mi2ll=false(length(ax2),1);
127 for j=1:length(lin_indic)
128 mi2ll=mi2ll|mi2l(:,j);
129 end
130 mi2=1:length(ax2);
131 mi2=mi2(mi2ll);
132
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133 plot(ax1,ay1,'−o','MarkerFaceColor',mc,'MarkerEdgeColor',mc,'MarkerIndices', ...
mi1,'MarkerSize',3,'Color', lc,'DisplayName',name);

134 %legend('−DynamicLegend','Location','southwest');
135 hold on
136 plot(ax1(end),ay1(end),'r*','MarkerEdgeColor',mc);
137 plot(ax2,ay2,'−o','MarkerFaceColor',mc,'MarkerEdgeColor',mc,'MarkerIndices', ...

mi2,'MarkerSize',3,'Color',lc);
138 if(isempty(ax2))
139 else
140 plot(ax2(1),ay2(1),'r*','MarkerEdgeColor',mc);
141 end
142 set(gca, 'YScale', 'log')
143 drawnow
144 end
145

146 xlabel('Ri');
147 ylabel('N(0)')
148 title('central concentration changing with Ri and pz and Q_0')

B.4 Calculate the amplitude

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % calculate amplitude after a set of calculation %
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % Author: Songrui LI %
6 % Date: Aug 30th %
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
8 close all
9 NPmax=zeros(length(T_loop),1);

10 Nf1=zeros(length(T_loop),1);
11 NP2max=zeros(length(T_loop),1);
12 Nf2=zeros(length(T_loop),1);
13 Pmax=zeros(length(T_loop),1);
14 f1=zeros(length(T_loop),1);
15 P2max=zeros(length(T_loop),1);
16 f2=zeros(length(T_loop),1);
17

18 for loop=1:5
19

20 [NP2max(loop),NPmax(loop)]=calculate_biggest_and_mid(10,1,N0_loop(loop,:),dt,298,298,300);
21 [P2max(loop),Pmax(loop)]=calculate_biggest_and_mid(10,2,u0_loop(loop,:),dt,298,298,300);
22

23 end
24

25 for loop=6:25
26

27 [NP2max(loop),NPmax(loop)]=calculate_biggest_and_mid(10,1,N0_loop(loop,:),dt,280,280,300);
28 [P2max(loop),Pmax(loop)]=calculate_biggest_and_mid(10,2,u0_loop(loop,:),dt,280,280,300);
29

30 end
31

32 for loop=26:42
33

34 [NP2max(loop),NPmax(loop)]=calculate_biggest_and_mid(10,1,N0_loop(loop,:),dt,250,250,300);
35 [P2max(loop),Pmax(loop)]=calculate_biggest_and_mid(10,2,u0_loop(loop,:),dt,250,250,300);
36

37 end
38

39 for loop=43:44
40

41 [NP2max(loop),NPmax(loop)]=calculate_biggest_and_mid(10,1,N0_loop(loop,:),dt,220,220,300);
42 [P2max(loop),Pmax(loop)]=calculate_biggest_and_mid(10,2,u0_loop(loop,:),dt,220,220,300);
43

44 end
45

46 NPmax=NPmax+1;
47 NP2max=NP2max+1;
48
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49 clearvars −except titl T_loop NPmax Nf1 NP2max Nf2 Pmax f1 P2max f2 A D alpha Re ...
Ri beta

50 save(append("f",titl));
51

52 function [Bigs, Midd]=calculate_biggest_and_mid(limi,figg,S,dt,t0,t_plot,t)
53 figure(figg)
54 hold on
55 t_sano=t_plot:dt:t;
56 plot(t_sano,S(t_plot/dt:t/dt));
57 title('Original signal S(t)')
58 xlabel('t')
59 ylabel('value')
60 drawnow
61 set(gcf, 'Position', [750, 50, 600, 500])
62

63 SS=S(t0/dt:t/dt);
64 Bigg=max(SS);
65 Smal=min(SS);
66 Midd=Bigg/2+Smal/2;
67 Bigs=Bigg−Smal;
68 if(Bigs>limi)
69 Bigs=0;
70 Midd=0;
71 end
72 end

B.5 Generate Bode diagram

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
2 % Plot the bode diagram %
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % Author: Songrui LI %
6 % Date: Aug 30th %
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
8 %%
9 %close all

10

11 name='Re=10';
12 PPlot(2*pi./T_loop,20*log10(NPmax−2),20*log10(NP2max),20*log10(Pmax),20*log10(−P2max),name,beta)
13

14 figure(3)
15 set(gca, 'XScale', 'log')
16

17 %%
18 figure(3)
19 ylabel('magnitude of u(0)/u_s /dB')
20 title('Bode plot of u(0) scaled by u_s')
21 %%
22 function PPlot=PPlot(alpha_loop,NPmax,NP2max,Pmax,P2max,name,beta)
23

24 figure(3)
25 hold on
26 plot(alpha_loop,P2max,'DisplayName',name)
27 % plot3(alpha_loop,beta*ones(44,1),P2max,'DisplayName',name)
28 legend('−DynamicLegend','Location','southwest');
29 ylabel('magnitude of u(0)/dB')
30 xlabel('\omega/rad*s^{−1}')
31 title('Bode plot of u(0)')
32 drawnow
33 end

48



Bibliography

[Bee20] Martin A Bees. Advances in bioconvection. Annual Review of Fluid Mechanics, 52:449–
476, 2020.

[CLS75] S Childress, M Levandowsky, and EA Spiegel. Pattern formation in a suspension of
swimming microorganisms: equations and stability theory. Journal of Fluid Mechanics,
69(3):591–613, 1975.

[FBH20] Lloyd Fung, Rachel N Bearon, and Yongyun Hwang. Bifurcation and stability of
downflowing gyrotactic micro-organism suspensions in a vertical pipe. arXiv preprint
arXiv:2001.08072, 2020.

[GLS+10] H Christopher Greenwell, LML Laurens, RJ Shields, RW Lovitt, and KJ Flynn. Placing
microalgae on the biofuels priority list: a review of the technological challenges. Journal
of the royal society interface, 7(46):703–726, 2010.

[HB02] NA Hill and MA Bees. Taylor dispersion of gyrotactic swimming micro-organisms in
a linear flow. Physics of Fluids, 14(8):2598–2605, 2002.

[HP14] Yongyun Hwang and TJ Pedley. Stability of downflowing gyrotactic microorganism
suspensions in a two-dimensional vertical channel. Journal of fluid mechanics, 749:750–
777, 2014.

[Hun98] J.C.R. Hunt. Lewis fry richardson and his contributions to mathematics, meteorology,
and models of conflict. Annual Review of Fluid Mechanics, 30(1):xiii–xxxvi, 1998.

[HWZ+18] Shuhao Huo, Zhongming Wang, Shunni Zhu, Qing Shu, Liandong Zhu, Lei Qin,
Weizheng Zhou, Pingzhong Feng, Feifei Zhu, Wei Qi, and Renjie Dong. Biomass ac-
cumulation of chlorella zofingiensis g1 cultures grown outdoors in photobioreactors.
Frontiers in Energy Research, 6, 06 2018.

[Kes84] John O Kessler. Gyrotactic buoyant convection and spontaneous pattern formation
in algal cell cultures. In Nonequilibrium cooperative phenomena in physics and related
fields, pages 241–248. Springer, 1984.

[Kes85a] John O Kessler. Co-operative and concentrative phenomena of swimming micro-
organisms. Contemporary Physics, 26(2):147–166, 1985.

[Kes85b] John O Kessler. Hydrodynamic focusing of motile algal cells. Nature, 313(5999):218–
220, 1985.

[Kes86a] John O Kessler. The external dynamics of swimming micro-organisms. Progress in
phycological research, 4:258–307, 1986.

[Kes86b] John O Kessler. Individual and collective fluid dynamics of swimming cells. Journal
of Fluid Mechanics, 173:191–205, 1986.

[MF03] A Manela and I Frankel. Generalized taylor dispersion in suspensions of gyrotactic
swimming micro-organisms. Journal of Fluid Mechanics, 490:99–127, 2003.

[MTB+09] Giancarlo Marafioti, Sihem Tebbani, Dominique Beauvois, Giuliana Becerra, Arsene
Isambert, and Morten Hovd. Unscented kalman filter state and parameter estimation
in a photobioreactor for microalgae production. IFAC Proceedings Volumes (IFAC-
PapersOnline), 7, 01 2009.

49



[PK90] TJ Pedley and John O Kessler. A new continuum model for suspensions of gyrotactic
micro-organisms. Journal of fluid mechanics, 212:155–182, 1990.

50


	Introduction
	Motivation
	Literature Review and Objective
	 Outline of the Thesis

	Methodology
	The Conservation Law of Cells
	Cell Characteristics and Assumptions
	Gyrotaxis Equations

	Momentum Equation with Buoyant Term
	Mesh and Boundary Conditions
	Parameters and Non-dimensionalisation
	Constant Flow Rate Equations
	Numerical Method
	Discrete Scheme for Fixing Flow Rate
	Discritization Scheme for Fixing Pressure Gradient
	Discrete scheme for Time-period Pressure gradient


	Bifurcation and Instability of Downflow and Upflow
	Prescribing Flow Rate
	Result of High Flow Rates
	Result of Low Negative and Positive Flow Rates

	Prescribing Pressure Gradient
	Combine All Data into One Chart
	Look into How the Initial Condition Affect the Convergence Performance for Negative Pressure Gradient


	Pulsatile Flow
	State Space System
	Effects of Different Parameters

	Conclusion and Evaluation
	Modelling
	Bifurcations Under Different Fixed Flow Rate Conditions
	Bifurcations Under Different Fixed Pressure Gradient Conditions
	Pulsatile Flow Under Sinusoidal Wave Pressure Gradient

	Derivation of cell conservation law and the analytical results
	Cell conservation law
	Solve n(r) Analytically

	Matlab codes
	Fixing the flow rate
	Shaking the pressure gradient
	Plot combined picture Figure3.7 and 3.6
	Calculate the amplitude 
	Generate Bode diagram


